Completeness of the system of root functions of q-Sturm-Liouville operators
نویسندگان
چکیده
In this paper, we study q-Sturm-Liouville operators. We construct a space of boundary values of the minimal operator and describe all maximal dissipative, maximal accretive, self-adjoint and other extensions of q-Sturm-Liouville operators in terms of boundary conditions. Then we prove a theorem on completeness of the system of eigenfunctions and associated functions of dissipative operators by using the Lidskii’s theorem. AMS subject classifications: 34L10, 39A13
منابع مشابه
Eigenfunction expansion in the singular case for q-Sturm-Liouville operators
In this work, we prove the existence of a spectral function for singular q-Sturm-Liouville operator. Further, we establish a Parseval equality and expansion formula in eigenfunctions by terms of the spectral function.
متن کاملInverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
متن کاملCompleteness of the rootvectors of a dissipative Sturm-Liouville operators on time scales
In this article, we consider dissipative Sturm–Liouville operators in the limit-circle case on time scales. Then, using the Livšic’s Theorem, we prove the completeness of the system of root vectors for dissipative Sturm–Liouville operators. 2013 Elsevier Inc. All rights reserved.
متن کاملInverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملInverse Sturm-Liouville problem with discontinuity conditions
This paper deals with the boundary value problem involving the differential equation begin{equation*} ell y:=-y''+qy=lambda y, end{equation*} subject to the standard boundary conditions along with the following discontinuity conditions at a point $ain (0,pi)$ begin{equation*} y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0), end{equation*} where $q(x), a_1 , a_2$ are rea...
متن کامل